Волокнистые композиционные материалы.
Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длинны волокна к диаметру l/d»10¸10³, и с непрерывным волокном, в которых l/d»∞. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длинны к диаметру волокна, тем выше степень упрочнения.
Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.
Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости (Е/γ) и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.
Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.
Для упрочнения алюминия, магния и их сплавов применяют борные (= 2500¸3500 МПа, Е = 38¸420 ГПа) и углеродные (
= 1400¸3500 МПа, Е = 160¸450 ГПа) волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют
= 2500¸3500 МПа, Е = 450 ГПа. Нередко используют в качестве волокон проволоку из высокопрочных сталей.
Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.
Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие = 15000¸28000 МПа и Е = 400¸600 ГПа.
В следующей таблице приведены некоторых волокнистых композиционных материалов.
Механические свойства композиционных материалов на металлической основе | |||||
Материал |
|
|
Е, ГПа |
|
Е/g |
МПа | |||||
Бор-алюминий (ВКА-1А) |
1300 |
600 |
220 |
500 |
84,6 |
Бор-магний (ВКМ-1) |
1300 |
500 |
220 |
590 |
100 |
Алюминий-углерод (ВКУ-1) |
900 |
300 |
220 |
450 |
100 |
Алюминий-сталь (КАС-1А) |
1700 |
350 |
110 |
370 |
24,40 |
Никель-вольфрам (ВКН-1) |
700 |
150 |
- |
- |
- |